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ABSTRACT

Many emerging real-world applications require fast processing of

large-scale data represented in the form of graphs. In this paper, we

design a Field-Programmable Gate Array (FPGA) framework to ac-

celerate graph algorithms based on the edge-centric paradigm. Our

design is flexible for accelerating general graph algorithms with

various vertex attributes and update propagation functions, such as

Sparse Matrix Vector Multiplication (SpMV), PageRank (PR), Single

Source Shortest Path (SSSP), and Weakly Connected Component

(WCC). The target platform consists of large external memory to

store the graph data and FPGA to accelerate the processing. By

taking an edge-centric graph algorithm and hardware resource con-

straints as inputs, our framework can determine the optimal design

parameters and produce an optimized Register-Transfer Level (RTL)

FPGA accelerator design. To improve data locality and increase

parallelism, we partition the input graph into non-overlapping par-

titions. This enables our framework to efficiently buffer vertex data

in the on-chip memory of FPGA and exploit both inter-partition and

intra-partition parallelism. Further, we propose an optimized data

layout to improve external memory performance and reduce data

communication between FPGA and external memory. Based on our

design methodology, we accelerate two fundamental graph algo-

rithms for performance evaluation: Sparse Matrix Vector Multipli-

cation (SpMV) and PageRank (PR). Experimental results show that

our accelerators sustain a high throughput of up to 2250Million Tra-

versed Edges Per Second (MTEPS) and 2487 MTEPS for SpMV and

PR, respectively. Compared with several highly-optimized multi-

core designs, our FPGA framework achieves up to 20.5× speedup

for SpMV, and 17.7× speedup for PR, respectively; compared with

two state-of-the-art FPGA frameworks, our designs demonstrate

up to 5.3× and 1.8× throughput improvement for SpMV and PR,

respectively.
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1 INTRODUCTION

Graphs have become increasingly important for representing real-

world networked data in emerging applications, such as the World

Wide Web, social networks, genome analysis, and medical infor-

matics [1]. To facilitate the processing of large graphs, many graph

processing frameworks have been developed based on general pur-

pose processors [1ś6, 34ś37]. These frameworks provide high-level

programming models for the users to easily perform graph pro-

cessing. They also focus on optimizing cache performance and

exploiting thread-level parallelism to increase throughput. How-

ever, general purpose processors are not the ideal platform for graph

processing [7, 8]. They induce several inefficiencies including (1)

wasted external memory bandwidth due to inefficient memory ac-

cess granularity (i.e., loading and storing entire cacheline data while

operating on only a portion of the data) and (2) ineffective on-chip

memory usage due to the poor spatial and temporal locality of

graph algorithms. To address these inefficiencies, dedicated hard-

ware accelerators for graph processing have recently gained lots of

interest [7ś23].

With the increased interest in energy-efficient acceleration, Field-

Programmable Gate Array (FPGA) has become an attractive plat-

form to develop accelerators [24, 25]. State-of-the-art FPGA devices,

such as UltraScale+ FPGAs [26], provide dense logic elements (up

to 5.5 million), abundant user-controllable on-chip memory re-

sources (up to 500 Mb), and interfaces for various external memory

technologies (e.g., hybrid memory cube [16]). Amazon Web Ser-

vice has recently launched FPGA-based cloud instances to allow

customers to develop FPGA accelerators for complex applications.

FPGAs have also been introduced into data centers to provide cus-

tomized acceleration of computation-intensive tasks [25]. Prior

works that accelerate graph processing on FPGA have shown sig-

nificant speedup and energy improvement over general purpose

processors [9ś11, 14ś17]. However, most of these FPGA acceler-

ators are algorithm-specific and require high development effort.
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Therefore, developing an FPGA framework for general graph algo-

rithms is becoming a new trend [21ś23]. However, existing FPGA

frameworks are designed based on the vertex-centric paradigm,

which accesses the edges of vertices through pointers or vertex in-

dices. This can result in massive random external memory accesses

as well as accelerator stalls [17].

In this paper, we propose an FPGA framework based on the edge-

centric paradigm [3]. Different from vertex-centric paradigm, edge-

centric paradigm traverses edges in a streaming fashion, making

FPGA an ideal platform for the acceleration [27]. Our framework

can accelerate general edge-centric graph algorithms and generate

the optimized FPGA accelerator which is implemented as parallel

pipelines to fully exploit the massive parallelism of FPGA. The main

contributions of our work are:

• We propose an FPGA framework for accelerating general

graph algorithms using the edge-centric paradigm. We ac-

celerate two fundamental graph algorithms, Sparse Matrix

Vector Multiplication (SpMV) and PageRank (PR), to evaluate

the performance of our framework.

• We adopt a simple graph partitioning approach to partition

the input graph. This enables an efficient use of the on-chip

RAMs of FPGA to buffer vertex data. As a result, the process-

ing engines on the FPGA can access the vertex data directly

from the on-chip RAMs during the processing.

• Our framework exploits inter-partition and intra-partition

parallelism at the same time. Distinct partitions are con-

currently processed by distinct processing engines on the

FPGA. Each processing engine consists of parallel pipelines

to process distinct edges of a partition.

• We also develop a design automation tool, which can produce

the synthesizable Verilog RTL of our design based on user’s

input parameters. The tool allows users to easily and quickly

construct graph processing accelerators.

• Experimental results show that our designs achieve a high

throughput of up to 2250 MTEPS and 2487 MTEPS for SpMV

and PR, respectively. Compared with state-of-the-art FPGA

designs, our framework achieves up to 5.3× and 1.8× through-

put improvement for SpMV and PR, respectively.

The rest of the paper is organized as follows: Section 2 covers the

background; Section 3 presents the framework overview; Section 4

discusses our optimizations; Section 5 describes the implementation

detail; Section 6 reports experimental results; Section 7 introduces

the related work; Section 8 concludes the paper.

2 BACKGROUND

2.1 Edge-centric Graph Processing

Edge-centric paradigm is flexible for capturing various graph algo-

rithms with different graph structures, data types, and graph update

functions [3]. Its computation follows a scatter-gather program-

ming model. As shown in Algorithm 1, the processing is iterative,

with each iteration consisting of a scatter phase followed by a gather

phase. In the scatter phase, each edge is traversed to produce an

algorithm-specific update based on the source vertex of the edge. In

the gather phase, all the updates produced in the previous scatter

phase are applied to the corresponding destination vertices. The

advantage of edge-centric paradigm is that it traverses the edges

in a streaming fashion. This makes FPGA an ideal acceleration

platform since FPGA has been widely used to accelerate streaming

applications [27].

Algorithm 1 Edge-centric Graph Processing

1: while not done do

2: Scatter phase:

3: for each edge e do

4: Produce an update u ← Process_edge(e,ve .src )

5: end for

6: Gather phase:

7: for each update u do

8: Update vertex u .dest ← Apply_update(u,vu .dest )

9: end for

10: end while

Vertex-centric paradigm is also widely used to design graph pro-

cessing frameworks [1]. However, one key issue of vertex-centric

paradigm is that traversing the edges requires random memory

accesses through indices or pointers [3]. The random memory ac-

cesses are highly irregular such that conventional memory con-

trollers are not able to efficiently handle them. In this scenario,

accelerator may frequently stall and the performance can signif-

icantly deteriorate [17]. Compared with vertex-centric paradigm,

edge-centric paradigm completely eliminates the random memory

accesses to the edges. Therefore, for large-scale graphs whose edge

set is much larger than the vertex set, edge-centric paradigm can

achieve superior performance than vertex-centric paradigm [3].

2.2 Data Structures

Edge-centric paradigm uses the coordinate (COO) format to store

the input graph [3]. The COO format stores the graph as an edge

array which has been sorted based on the source vertices of the

edges1. Each edge in the edge array is represented as a <src, dest,

weight> tuple, which specifies the source vertex, the destination

vertex, and the weight of the edge, respectively. All the vertices

are stored in a vertex array, with each vertex having an algorithm-

specific attribute (e.g., PageRank value of the vertex). Each update

produced in the scatter phase is represented as a <dest, value> pair,

in which dest denotes the destination vertex of the update and value

denotes the value of the update. Figure 1 shows the data structures

of an example graph2.

2.3 Algorithms

In this paper, we accelerate two fundamental graph algorithms

which are core kernels and building blocks in many applications.

This section briefly introduces these two algorithms and shows

how each algorithm maps to the edge-centric paradigm.

2.3.1 Sparse Matrix-Vector Multiplication. Sparse matrix-vector

multiplication (SpMV) is a widely used computational kernel in

scientific applications [10]. Generalized SpMV iteratively computes

1For undirected graphs, each edge is represented using a pair of directed edges, one in
each direction.
2In this example, we assume the value of each update is obtained by multiplying the
edge weight and the attribute of the source vertex of the edge
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Table 7: Comparison with state-of-the-art FPGA-based de-

signs

Algorithm Dataset Approach
Throughput

Improvement
(MTEPS)

SpMV WK
[23] 190

5.3×
This paper 1004

PR

WK
[22] 965

1.2×
This paper 1116

LJ
[22] 1193

1.8×
This paper 2110

TW
[22] 1856

1.3×
This paper 2487

7 RELATEDWORK

7.1 Software Graph Processing Frameworks

Many software-based graph processing frameworks have been de-

veloped, such as GraphChi [2], X-Stream [3], PowerGraph [4] and

GraphMat [6] on multi-core, and CuSha [35], Gunrock [36], and

Graphie [37] on GPU. These frameworks provide high-level pro-

gramming models to allow programmers to easily perform graph

analytics. They also focus on optimizing memory performance

and exploiting massive thread-level parallelism. GraphChi [2] is

the first graph processing framework on a single multicore plat-

form. It is based on the vertex-centric paradigm and proposes a

parallel sliding windows method to handle out-of-core graphs. X-

Stream [3] proposes the edge-centric paradigm to maximize the

sequential streaming of graph data from disk. GraphMat [6] maps

vertex-centric graph computations to high-performance sparse ma-

trix operations. CuSha [35] addresses the limitation of uncoalesced

global memory data accesses for GPU graph processing. Gunrock

[36] proposes a data-centric processing abstraction which acceler-

ates the frontier operations using GPU. Graphie [37] implements

the asynchronous graph-traversal model on GPU to reduce the data

communication.

The optimizations proposed in this paper are also applicable

to multi-core and GPU platforms. First, the partitioning approach

can be performed based on the cache size of multi-core and GPU

platforms to improve the cache performance [38]. Second, distinct

thread blocks (i.e., groups of threads) can concurrently process

distinct partitions, while inside each thread block, distinct threads

can process distinct edges or updates in parallel. Third, the update

combination mechanism can be performed using a parallel scan

operation.

7.2 FPGA-based Graph Processing Accelerators

Using FPGA to accelerate graph processing has demonstrated great

success. In [16, 19, 20], Breadth First Search (BFS) is accelerated on

FPGA-HMC platforms. The designs achieve a high throughput of

up to 45.8 GTEPS and power efficiency of up to 1.85 GTEPS/Watt

for scale-free graphs. In [12], an FPGA accelerator for SpMV is

proposed based on a specialized CISR encoding approach. The de-

sign achieves one third of the throughput performance of a GTX

580 GPU implementation with 9× lower memory bandwidth and

7× less energy. However, many existing FPGA-based accelerators

[11, 12, 14ś17] are algorithm-specific and cannot be easily extended

to accelerate other graph algorithms. GraphGen [21] is an FPGA

framework based on the vertex-centric paradigm to accelerate gen-

eral graph applications. GraphGen pre-processes the input graph by

partitioning it into subgraphs and then processes one subgraph at a

time. It also provides a compiler for automatic HDL code generation.

However, GraphGen requires the vertex data and the edge data of

each subgraph to fit in the on-chip memory of FPGA. For large real-

life graphs, this can lead to a large number of subgraphs and thus

significantly increase the scheduling complexity. GraphOps [23]

is a dataflow library for graph processing. It provides several com-

monly used building blocks for graph algorithms, such as reading

the attributes from all the neighbor. However, GraphOps is based

on the vertex-centric paradigm and thus suffers random memory

accesses to the edges. ForeGraph [22] is a multi-FPGA-based graph

processing framework. It partitions the graph and uses multiple

FPGAs to process distinct partitions in parallel. However, the perfor-

mance can be constrained by the communication overhead among

the FPGAs.

8 CONCLUSION

In this paper, we presented an FPGA framework to accelerate graph

algorithms based on edge-centric paradigm. We partitioned the

input graph to enable efficient on-chip buffering of vertex data and

increase the parallelism. We further proposed an efficient update

combination mechanism to reduce data communication. To facil-

itate non-FPGA-experts, we also developed a design automation

tool for our framework. We accelerated SpMV and PR to study

the performance of our framework. Experimental results showed

that our framework achieved up to 20.5× and 17.7× speedup com-

pared with highly-optimized multicore designs for SpMV and PR,

respectively. Compared with state-of-the-art FPGA frameworks,

our design achieved up to 5.3× and 1.8 × throughput improvement

for SpMV and PR, respectively. In the future, we plan to evaluate

our framework using more fundamental graph algorithms, such as

finding connected components and single source shortest path.
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